Photocurable Bioink for the Inkjet 3D Pharming of Hydrophilic Drugs
نویسندگان
چکیده
Novel strategies are required to manufacture customized oral solid dosage forms for personalized medicine applications. 3D Pharming, the direct printing of pharmaceutical tablets, is an attractive strategy, since it allows for the rapid production of solid dosage forms containing custom drug dosages. This study reports on the design and characterization of a biocompatible photocurable pharmaceutical polymer for inkjet 3D printing that is suitable for hydrophilic active pharmaceutical ingredients (API). Specifically, hyaluronic acid was functionalized with norbornene moieties that, in the presence of poly(ethylene) glycol dithiol, Eosin Y as a photoinitiator, and a visible light source, undergoes a rapid step-growth polymerization reaction through thiol-ene chemistry. The engineered bioink was loaded with Ropinirole HCL, dispensed through a piezoelectric nozzle onto a blank preform tablet, and polymerized. Drug release analysis of the tablet resulted in 60% release within 15 min of tablet dissolution. The study confirms the potential of inkjet printing for the rapid production of tablets through the deposition of a photocurable bioink designed for hydrophilic APIs.
منابع مشابه
Drop-On-Drop Multimaterial 3D Bioprinting Realized by Peroxidase-Mediated Cross-Linking.
A cytocompatible inkjet bioprinting approach that enables the use of a variety of bioinks to produce hydrogels with a wide range of characteristics is developed. Stabilization of bioinks is caused by horseradish peroxidase (HRP)-catalyzed cross-linking consuming hydrogen peroxide (H2 O2 ). 3D cell-laden hydrogels are fabricated by the sequential dropping of a bioink containing polymer(s) cross-...
متن کامل3d Inkjetting Droplet Formation of Bacterial Cellulosic Exopolysaccharide Gel
On-demand 3D printing of scaffolds and cell-laden structures has shown promising results that can significantly impact human welfare. The objective is to fully understand the behavior of bacterial cellulosic exopolysaccharide gel (BCEG) as a new bioink with low toxicity and high biocompatibility for regenerative medicine. Its possible application is to construct scaffolds that can be used for s...
متن کاملRecent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs
There is a growing demand for alternative fabrication approaches to develop tissues and organs as conventional techniques are not capable of fabricating constructs with required structural, mechanical, and biological complexity. 3D bioprinting offers great potential to fabricate highly complex constructs with precise control of structure, mechanics, and biological matter [i.e., cells and extrac...
متن کاملBioprinting Cartilage Grafts
Bioprinting is an emerging technology for the fabrication of patient-specific, anatomically-complex tissues and organs. A novel bioink was developed based on two unmodified regulatory-compliant polysaccharides, gellan and alginate, which undergoes cell friendly gelation in the presence of cations. Rheological properties of the bioink revealed optimal shear thinning and shear recovery properties...
متن کامل3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation.
In this work we demonstrate how to print 3D biomimetic hydrogel scaffolds for cartilage tissue engineering with high cell density (>10(7) cells ml(-1)), high cell viability (85 ÷ 90%) and high printing resolution (≈100 μm) through a two coaxial-needles system. The scaffolds were composed of modified biopolymers present in the extracellular matrix (ECM) of cartilage, namely gelatin methacrylamid...
متن کامل